MOOC概率考题书

更多详情

内容简介: 果壳网MOOC学院受欢迎的课程老师、台大叶丙成教授,这一次,他和他的学生们一起推出了这本讲故事的习题集,用27个通俗易懂的小故事教你学好概率,了解世界运行的数学规律,找到百分百恋人。真正的数学隐藏在生活之中,隐藏在账单、科技产业、电玩游戏中,还有各种更难以想象的地方。书中许多文章的灵感源自于文学名著、电玩游戏、热门电影,展现如何充满创意地将生活中的数学元素萃取出来。让大家感受到数学的温度,并且重新思考:数学其实没有这么讨厌、这么恼人。


目录: 序言
●薛定谔的猫咪日记 1
●实况野球 6
●现在,很想见你 10
●近似完美句子 14
●生死一线间 20
●少年哥的富翁漂流 29
●伊伊港载货 36
●愤怒的小鸟:角度,很重要 43
●Face on FIRE !!! 48
●有机农作物 55
●热爱冒险的男人 61
●真实的冒险 68
●仙灵岛 74
●排队看晚会是大学生必解任务 81
●关于戳戳乐 85
●RamdomoTM 91
●巧克力 99
●寻找新商机 107
●非死不可:Connect you to the hell 113
●SF online 118
●V 城追杀录 122
●艾潘尼捎信 128
●格兰杰的遗嘱 135
●四月某个晴朗的早晨遇见100%的女孩 141
●学概率送半导体制程 146
●大雄的高斯人生分布 156
●男子大学生的日常 161
●给想继续挑战的读者们 173
●概率的意义 173
●随机变量与其函数 175
●随机变量(random variable, RV) 175
●概率质量函数(probability mass function, PMF) 175
●累积分布函数(cumulative distribution function, CDF) 176
●概率密度函数(probability density function, PDF) 177
●期望值(E[X]) 178
●条件概率 179
●联合CDF、PMF、PDF 180
●各种概率分布 181

书摘: ●遇上百分百女孩
那故事从“从前的从前”开始,以“你不觉得很悲哀吗?”结束。从前的从前,有一个地方,有一位少年和一位少女。少年十八岁,少女十六岁。少年并不怎么英俊,少女也不怎么漂亮。是任何地方都会有的孤独而平凡的少年和少女。不过他们坚决地相信,
在这世界上的某个地方,一定有一位100%跟自己相配的少女和少年。
有一天,两个人在街角偶然遇见了。
“好奇怪啊!我一直都在找你,也许你不会相信,不过你对我来说,正是100%的女孩子呢。”少年对少女说。
少女对少年说:“你对我来说才正是100%的男孩子呢。一切的一切都跟我想象的一模一样。简直像在做梦嘛。”
两个人在公园的长椅上坐下,好像有永远说不完的话,一直说下去,觉得再也不孤独了。追求100%的对象,被100%的对象追求,是一件多么美妙的事啊!可随着谈话继续,男孩和女孩的心里,却不由得闪现出一点点的疑虑,就那么一点点梦想,就这么简单地实现,是不是一件好事呢?谈话忽然中断的时候,少年这么说道:“让我们再试一次看看。如果我们两个真的是100%的情侣的话,将来一定还会在某个地方再相遇,而且下次见面的时候,如
果互相还觉得对方是100%的话,那么我们马上就结婚,你看怎么样?”
“好哇。”少女说。
于是两个人就分手了。
其实说真的,实在没有任何需要考验的地方;因为他们是名副其实100%的情侣。而且命运的波涛是注定要捉弄有情人的。来年冬天,男孩得了流行的恶性流行性感冒,好几个星期都一直在生死边缘挣扎的结果,往日的记忆已经完全丧失,当他在来年次年的秋天醒过来的时候,他的脑子里已经像少年时代的D.H.劳伦斯的钱包一样空空如也。
女孩每年四月某日晴朗的早晨在那个街角穿梭。之后,男孩努力再努力后,总算又获得了新的知识和感情。并且顺利地重回社会。他也能好好地搭地下铁换车,也能到邮局去发
限时专送,也经历着75%的恋爱,或85%的恋爱。
女孩依然每年四月某日晴朗的早晨在那个街角徘徊。
随着时间流逝,深藏在男孩脑海深处,关于女孩的记忆,逐渐复苏,他以每年平均2.5%的分量,依照指数分布的方式exponential(0.4)的增长。也就是f(x)=λe-λx,参数λ=0.4
每隔一年,他就稍微记起那位女孩,从0%~2.5%,一路慢慢成长。
而就算没有完全想起,但他的身体很自然而然地,仿佛反射动作一样,每年也会在四月某个晴朗的早晨,为了一杯MorningService的咖啡,在一条巷子里由东向西走去,然后经过那个街角。
那是女孩每年四月的某个早晨,都会站在那儿等待的街角。
由于彼此原是100%的男孩女孩,所以不管等多少年,两人必然会再次相遇的。但每年也就只有1/30的概率,男孩会遇上在那等待的女孩。也因此,再次相遇的年数N,便呈几何分布(geometricdistribution)
。。。。。。
●真实的冒险
生死攸关的大冒险,应该是只会在游戏、小说、梦境中出现的。如果是游戏的话,只要关掉就可以了。如果是小说的话,只要合上就可以了。如果是梦境的话,只要醒来就可以了。
但是,如果醒来后,突然就面对着生死攸关的困境了,那又代表着什么呢?
在头痛剧烈下醒来的琼斯,发现自己躺在一节车厢里,环顾四周没有一个人,车门与车窗通通被木条给钉死。在这封闭空间透露出不协调感的,是挂在一旁的定时器,和不知为何在自己手上的一封信:
亲爱的琼斯:
很高兴我们又见面了。
虽然我很想这么说,但为了我自己的安全起见,还是决定在远方
悠哉地欣赏你的反应。
作为补偿,我决定送你一份礼物。
我知道你是个喜欢冒险的人,所以特地送你来到这里,让你能够尽情展现自己的帅气和潇洒。
请好好享受我为你精心安排的真实冒险。
诚挚的
道姆·柯布
PS当你看完这封信,记得去找一下附近的定时器。当上面的时间归零时,这里将会有一辆大推车过来,压扁整节车厢。祝你顺利。再说一次,我真的好想现场看看你现在的表情。
琼斯丢去手中的信,站起,余光瞄到挂在一旁的定时器,不禁一震。3分钟
2分59秒
2分58秒
……
不知是刻意的还是误算,定时器上无情流逝的时间,所剩无几。车门与车窗全被封死,没有任何工具,没有能帮忙的人。对于过于突然的展开,琼斯只是呆呆地站着,无力地仰起头。
(我要死了?)
(只不过在对方设计的梦境中赢了场游戏,就被拖到这种鬼地方,面对这种鬼情况,然后就要不明不白地死去?)仰着头的琼斯,紧紧地盯着天花板。(这种事情,怎么能允许它发生!)
琼斯纵身向上跳,他的目标,是一个恰好开在车顶的、堪堪能让人钻出去的破洞。然而,车顶离底面有3米,单纯的跳跃是不够的。在定时器即将归零时,他注意到悬吊在车顶的断裂木条,就纵身一跃,用手一把抓住,上臂一收,总算成功跃上了屋顶。这时候,定时器就只剩下了3秒钟,琼斯又花了2秒的时间站稳。此时但见眼前有无数个车厢并列着,推车正疾驶过来,即将撞上他脚下的车厢。千钧一发之际,唯一的办法是立即往别的车厢跳去。但为了让腿部肌肉在有限时间能蓄积最大的动力,琼斯得等到车厢被压的瞬间才跳离。
按照过往的经验,可以推知他的腿部肌肉能在这剩下1秒钟收缩而跳到的平均车厢数为1.5(例如只跳到相邻的车厢,则跳到的车厢数为1),由于肾上腺素浓度太高,无法控制跳的距离,所以这次跳到的车厢数的概率为泊松分布,跳多远都有可能。一旦跳到另一节车厢上即会掉入该车厢内。在此假设琼斯本来站的车厢设为0,相邻者为1,再相邻者为2,以此类推。
※在家里监控着这一切的柯布,愉快地看着远处摄影机的画面,嘴角抽动地笑着。
如果不这样的话,根本就算不上开始。被压扁的车厢,不过是俄罗斯轮盘的扳机,决定命运的子弹,是他即将跳到的车厢。
1号车厢内有个巨大硫酸池,掉入该车厢必死无疑。
2号车厢内的后门门把是炸弹开关,从这节车厢离开只有前后两个门可走,根据预测报告,琼斯走后门的概率为0.6。
3号车厢内有一位盲武士,他会对入侵者发动突袭,连砍5刀,虽然有七成的概率会漏掉,但攻击力却会随着漏的次数提升,而4次之后,将到达能杀人的杀伤力。由于不足以杀人的攻击力对入侵者几乎没影响,如果5刀都以失败告终,那最后对打起来他根本不
是琼斯的对手。
4号车厢内有个脾气古怪的枪手,他会向入侵者连开4枪,但都不会射到其要害,不过正因枪手脾气古怪,他只会放过4枪中刚好躲过一枪的人,对于那些没放过的对象,4枪射完后,他将立即射击其要害。枪手平均命中率为8成,但若是射击要害则必会射中。
5号车厢内有5只猛兽,会对入侵者轮番攻击,其中一只装有毒牙,若被其咬到,不久就会毒发身亡,但其他几只没有威胁性。以琼斯的能力,大概能在只被2只咬到的情况下制伏全部。不过制伏后是否会毒发身亡,就不知道了。
6号车厢内有500个引爆按钮,依车厢围成一圈,其中只有编号314的钮不会触发爆炸,且能使入侵者平安离开,已知入侵者若掉入该车厢,一定会等概率落在按钮313~318其中一个位置,琼斯天生豪爽,遇到猜赌数字序号的事物只会选最近者。并不是一定要杀了他。也不是希望看到他活下来。这只是娱乐,是赌博,是冒险。
6发子弹都装满的俄罗斯轮盘,没有任何乐趣可言。正因为有失败的风险,才有成功的乐趣。复杂而花哨的设计,都只不过是为了在这报复剧中,增添一点醍醐味。
那么,今天子弹击出的概率是多少呢?
……